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Abstract.-Momentum relationships involved in the motion of a sphere through
a perfect fluid are considered. The mechanism, by which the momentum given
to a sphere by an external impulsive force is transferred to the container as a
whole, is traced through in some detail, and energy and momentum relationships
are discussed. Comparison is made with a 3He atom or a roton moving in super-
fluid 4He.

Superfluid helium behaves much like an incompressible inviscid fluid, and the
motion of foreign molecules, electrons, and excitations through it has led to
renewed interest in a problem of classical hydrodynamics, namely, the move-
ment of a solid sphere in a perfect fluid. This problem has been worked out for a
sphere in an infinite fluid and for a sphere at the center of a spherical box.
However, several interesting questions were not considered.
One especially interesting experiment is the production of excitations in super-

fluid helium by neutrons.2 These are produced with definite energy and definite
momentum, there being a relation between the energy e and the momentum p, as
shown roughly in Figure 1. If we imagine a container of liquid helium suspended
by a string and being bombarded by a beam of neutrons at right angles
to the string, it is clear that the momentum of the excitation produced will be
ultimately transmitted to the container. A somewhat similar process would be
the transfer of momentum to a sphere in a perfect fluid by a neutron which did
not act on the fluid. An analysis of the mode of transfer of momentum to the
container might, hopefully, offer some further physical insight into the process
of excitation, especially of rotons, in liquid helium, even though this has been the
subject of a detailed quantum mechanical investigation.3 So let us consider the
motion of a sphere of radius a located at the center of a large but finite spherical
container of radius b filled with perfect fluid. Other geometrical arrangements
could be considered, but they would be much more complicated, and the one
suggested is sufficient to throw considerable light on the dynamics of the situa-
tion.

FIG. 1.-Relation between energy E
and momentum for excitations in
liquid helium. The excitations with
low p are sound waves (phonons), but
the excitations near the minimum
(rotons) have a localized character, and
their motion through the superfluid,
particularly, resembles to some extent
that of a body moving through a /
perfect fluid.
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We designate positions in the container by polar coordinates, r, 0, 4, with origin
at the center of the container, and with the polar axis in the direction of the mo-
tion of the small sphere. The velocity v of the fluid at any point may be de-
scribed in terms of a velocity potential awhich will obey Laplace's equation. By
symmetry 4i will not depend on the equatorial angle 4, so the Laplace equation
takes the form

ar(2 as)+sa(in a as) 01
+rb i 0 6-sn 0 (1)

with, of course,
v =-grad (. (2)

At the surface of the moving sphere the normal component of v is equal to the
normal component of the velocity vo of the sphere. At the surface of the con-
tainer the normal component of v vanishes. Thus the boundary conditions are

at r = b A64/br = 0, (3a)

at r = a, - &'/ar vo cos 0, (3b)
where vo is the magnitude of vo.
A solution of equation (1) which conforms to the boundary conditions is'

b = (Ar + B/r2) cos 0, (4)

with

A = voa3/(b3- a3), (5)

and

B = 1/2voa3b3/(b 3- a3). (6)

With these values of A and B, equations (2) and (4) may be used to obtain the
velocity v. It is convenient to use the Cartesian components of v, so we write

b = Az + Bz/r3. (7)

Recalling that be /8x = x/r, etc., we find

Vx = 3Bzx/r5 = (3B/r3) cos 0 sin 0 cos +X (8)

vy = 3Bzy/r5 = (3B/r3) cos 0 sin 0 sin 4), (9)

vz = 3Bz2/r5- A -Br3,
= (3B/r3) COS2 0 -A - B/13. (10)

The kinetic energy of the liquid plus that of the sphere of radius a having the
same density p as the liquid is given by

.2V brr
Ek = 1/2 P('/3 7r a')V02 + 1/2Pff (VX2 + VV2 + VZ2)r2 sin 0 dr dO d+. (11)

Only vz depends on A. Contributions from the terms (2AB/r3) (3 cos2 0 - 1)
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occurring in v"2 cancel since the average of cos2 0 over the sphere is 1/3. If b >> a,
then A2 is negligible compared to B2/r6 except where r - b, but if b/a is large,
these regions contribute negligibly, anyhow. Nevertheless, the contribution
from A2 can be included, and we obtain the known result

Et = 3/2 . 1/2 p(/3 7ra3)vO2-b3/(b3 - a3) (12)

which, when b -a. o, approaches the kinetic energy of a body with 3/2 the mass of
the sphere moving with velocity vo.
The momentum of the fluid has apparently not been discussed in the classical

literature. The total momentum, p, of the fluid should, if the container is sta-
tionary, be equal and opposite to that of the moving sphere, if the latter has the
same density as that of the fluid, for in this case there should be no net momen-
tum. We need consider only vz and

2Tr wb
P = JOJ vZr2 sin dr dOdo.

If A were zero, we would get p = 0, as is seen by integrating over 0 first. The net
contribution is completely determined by A, and indeed

ra2t I'Trbp = -p I Ar2 sinO drd0 do =-4/3 rpA(b3 - a3) - -4/3 7rpa3 vo (13)
JO SO Ja

by equation (5). Thus the momentum of the fluid is, indeed, equal to and
opposite in sign to that of a sphere of the same density. It is of interest that, had
we gone to the limit of an infinite fluid and set A = 0 before setting up the inte-
gral, we would have missed this momentum altogether. The contributions
always come predominantly from near the wall of the container.

If a force f acts on the small sphere through a very small distance 8z, the work
done will appear as kinetic energy of the sphere and the fluid. We will thus have
for a sphere of mass m having the same density as the liquid

f6z = 5(3,/2 1/2 mv0) 3/2 mVO 8vo- (14)

The time through which the force acts is 3z/vo. Thus the change of momentum is
3/2 m~vo, and the moving sphere has the same effective mass for momentum as it
does for kinetic energy. But we have seen that if the large sphere is held fixed,
the momentum of the liquid cancels that of the sphere. The momentum must
therefore be transmitted to the container through pressure exerted upon the
walls. We intend to calculate this pressure to see how this occurs. In classical
treatises on hydrodynamics4 it has been shown that the pressure is given by

P= P 1/2V2) + F(t), (15)

where F(t) is a constant of integration, which may be a function of time, but
which may be ignored for our purposes.
We shall first show that (consistent with our findings about the back momentum

of the fluid) if a sphere moves a small distance vobt from the center of the container
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in a time 5t with uniform velocity, the pressure on the container in the forward
direction will be equal to that in the backward direction. From equations (2)
and (4), we see that the value of Ivi and hence of v2 will be the same at the angle
0 as at the angle r - 0. Thus the term pv2/2 in equation (15) will contribute
pressures which will be equal at 0 and r - 0, and since the z-components of the
forces thus produced will be in opposite directions, these forces will balance. It
is clear from the discussion of equation (11), that, even if this cancellation did
not occur, the contribution from this term would be negligible in a large container.
To find 6bA/at we evaluate 4 after the sphere has moved a distance vobt. We

need to maintain the boundary conditions of the surfaces both of the sphere and
the container when the sphere is in its new position. Let s be the distance from
the center of the sphere, r remaining the distance from the center of the container.
Taking s as the independent variable for the Laplace equation, we observe that
the solution

b = (As + B/s2) cos 0', (16)

where 0A is measured from the center of the moving sphere, would, with A and B
given by equations (5) and (6), satisfy the boundary conditions at s = a, but not
at r = b. We note that, since a cos O/ar = 0 (we must hold 0 constant in differ-
entiating at the surface of the container),

) =(A - 2B)(1 + 6(s - r) COS 8s + (As + B) (cos 0s - cos 0), (17)
where we have written as/br = 1 + b(s - r)/br. From the law of cosines for
the triangle s, r, vobt (the angles between r and vobt and s and v0ot being 0 and ir
- O., respectively),

S2 = r2 + (vobt)2 -2rvObt cos 0,

or

r2= 82 + (V05t)2 + 2sv05t cos 0S,
we find to the first order in vo0t

s-r= -vo0t cos 0, (18)

and

s cos 0E- r cos 0 = -vot.
The latter becomes, using equation (18),

cos As- cos 0 = -(voBt/r) (1 -cos2 0). (19)

From (18) we see that 6(s -r)/br 0O. It is also true, when s b, that A
- 2B/s3 = 0. However, it is important to evaluate this more precisely. With
the aid of equation (18), we see that when r =b,

A 2B = A 2B _A-. 2B -6vot(B/b4) COS.
33 b3 + s3-b3b--3b2vbt cosb 6Bbo0
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Using this expression and equation (19) in equation (17), and noting again that
A = 2B/b3, we find

(C /8l')r - b s3vo5t(B/b4)(1-3 COS2 0).
We now seek a solution of equation (1) for which (6I/br)r = 0 (to the first
order of vobt), while still conforming to (I/6S),=a = vo cos 0. Such a solution
can readily be seen to be

(D = (As + B/s2) cos 0A + C(s2 - 2a5/3s3)(1 - 3 cos2 0w). (20)

It satisfies the condition at s = a, because there the derivative with respect to s
(08 constant) of the last term vanishes. When s z b, we may, in the last term,
replace s by r and cos Es by cos 0, since C must itself be small. Then it can be
seen that if b >> a, the boundary condition is satisfied if C C3- //2vBf/b5
- 3/4 V025t a3/b5. The largest term in dd¢/dt, then, for b >> a, is Avo2 a3/b3 at
r = b, but, in any case, all terms are multiplied by either cos2O or 1, so the direc-
tional balancing of the force on the surface of the container occurs as for the
(p/2)v2 term of equation (15).
But suppose that the sphere, located at the center of the container, receives an

impulse, so that v0 changes by 5v0 in time Ut. In this case we need only to differ-
entiate A and B, equations (5) and (6), and use equation (4), to find, at r = b,

2CO/t= 3/2(a3/b2)cos 0 (dvo/dt) b3/(b3 - a3), (21)

which is antisymmetric fore and aft.
The net force on the container is obtained by multiplying b(D/bt by the element

of area, b2 sinG dO d+, and by cosO to get the z-component, or

fz = 3/2 pa3(dvo/dt) f cos 20 sin 0 dO dX b3/(b3 - a3)

= 3/2 4/37rpa3(dvo/dt) b3/(b3- a3). (22)
Thus the force is that to produce the given acceleration in a body with a mass
equal to 3/2 the mass of the sphere, with the same correction for the size of the
container as appears in (12), and the corresponding momentum will be trans-
ferred to the system as a whole.5

If the sphere has a density p' different from that of the liquid, it will respond to
an impulse as though it had a mass of 4/37ra3(p' + 1/2p). Thus the momentum
transmitted to the container will not be equal to the momentum transmitted to
the sphere, for the former will, as before, be 4/37ra3(3/2p). The difference will be
reflected in a forward momentum of the sphere differing from the back momen-
tum of the fluid by 4/37ra3(p' - p)vo. Thus some of the total momentum may be
considered to be separate momentum of the sphere as contrasted to momentum-of
the system as a whole; however, the displacement 5x through which the impulse
acts is related to the time in the same way as before: Ax = vobt.
However, the last relationship will not be true if the impulse produces a change

in internal energy of the sphere. Only the part transmitted to kinetic energy
will be directly related to momentum and, as before, the change in momentum of
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the whole system will, regardless of the mass and internal energy of the sphere, be
3/2-4/3rpa3bvo b3/(b3- a3).
Though some of these observations may be applicable to the motion of an 'He

atom dissolved in 4He liquid, or to the motion of a roton in liquid 4He, there will
be obvious differences. One difference will arise because liquid helium is not in-
compressible, so the pressure changes resulting from a change in the motion of the
particle under consideration, due, for example, to collision with a neutron, will not
be transmitted instantaneously. This may not be too serious since (15) is a
good approximation even if the liquid is compressible, provided p does not vary
too much, and the use of the velocity potential depends only on the motion's
being irrotational, although the Laplacian cannot be equated to zero if the liquid
is compressible. If, however, the use of Laplace's equation gives a reasonable
approximation near the boundary of the container before and after the change of
motion has occurred, we may expect the change 54 in 4P to be a reasonable substi-
tute for (61/1t) 6t in calculating the total change in momentum from (15).
Furthermore, we may expect the change in 4' produced by the acceleration due to
collision with a neutron to have the most important effect. To see this, we
compare the value of d4./dt from (21) with the value vo2a3/b3, which would be ob-
tained in the case of uniform motion, if we ignored the cancellation due to direc-
tional effects. This involves a comparison of vo2/a with dvo/dt. Applying this to
an atom moving in a superfluid, a/vo is approximately the time required for the
atom to move an atomic distance, and v0 *. a/vo is an "acceleration" which is
certainly much smaller than the acceleration produced by a neutron colliding with
a helium nucleus; furthermore, in v02a3/b3 it is multiplied by a/b.
On the other hand, the molecular character of the liquid means that the equa-

tions cannot be applied close to a single atom and this may have an effect on the
effective mass. A roton in liquid helium may be expected to have some of the
characteristics of a vibration of one of the atoms in the field of its neighbors.
Thus some of the energy will go into this internal energy, and the remarks of the
paragraph before the last will apply-only part of the energy will be associated
with the momentum. If the energy is high enough for this vibrator to dissociate,
i.e., for one of the atoms to break away from its neighbors, the analogy to a mov-
ing sphere should be closest.
The effective mass m may be calculated from the relation between momentum

and total kinetic energy 'k of sphere and fluid, namely,
2 m = (mv)2//'2mv2 = p2/Ek, (23)

but cannot, apparently, be obtained for rotons with high p and Ek. The curve
obtained by neutron excitation is the curve exhibited in Figure 1. The part just
to the right of the minimum parallels the phonon part of the curve almost exactly.
This may mean that an energetic neutron produces a roton and a phonon rather
than a more energetic roton. One may, however, apply equation (23) to the
minimum of the curve, taking Ek as the total energy of the roton. The data2 give

m -M4 1.5 M4, (24)

where M4 is the mass of 4He. This is already larger than might be expected for a
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sphere moving in a continuum, but the value of m must be larger than this, since
only part of the energy transmitted shows as kinetic energy. It is of interest that
this bears no resemblance to the apparent mass of a roton obtained by dividing
the mass of normal fluid arising from rotons by the number of rotons. The latter
depends on the temperature and has been described in different ways.6 7 It is
involved in a different process, the motion of superfluid relative to normal fluid,
which is not directly connected with transfer of momentum to the container. A
roton is presumably formed by direct collision of a neutron with a helium atom.
The latter could then behave momentarily like a sphere moving through the
superfluid. If the impulse associated with the kinetic energy is transmitted to
the surrounding liquid before the internal vibrational part of the energy of the
roton is transmitted, exciton fashion, to neighboring atoms, it seems reasonable to
treat the excited molecule as a single body moving in a nearly perfect fluid.7 This
would be expected to be a better description, the higher the momentum.
In the case of 3He in 4He, there is no possibility of transmission of the excitation

from atom to atom, the 3He does move as a single body. Therefore, the effective
mass can be obtained from second sound measurements8 in solutions of 3He in 4He,
or from the onset of Fermi degeneracy as evidenced by specific heat measure-
ments in such solutions.9 The former measurements give 2.8 m3, the latter 2.34
mi, where M3 is the mass of 3He. Translated into terms comparable with equa-
tion (24), these figures give

m-m3r 1.35iM4 (25a)

and

m -M3 1.00 M4. (25b)

These figures are somewhat smaller than the value shown in equation (24). This
means that the 3He atom has less effect on the surrounding medium than does the
4He atom.
The fact that the values in equations (24) and (25) are larger than 1/2 is not

surprising even from the most elementary point of view, since each atom actually
has an exclusion sphere which has a radius twice the actual radius of the atom.
Thus an atom may effectively occupy a larger volume as a moving sphere than its
atomic volume as obtained from the density. The larger value which appears in
equation (24) may have something to do with the differences between a 4He
excitation and a 3He impurity, which have already been mentioned. It occurs
in spite of the fact that, on account of its larger zero-point motion, the apparent
molecular volume of a 3He atom in liquid 4He is 1.28 times that of the 4He
atoms. 10
A recent theoretical calculation gives"M -i3 = 0.64 M4.
* Work supported by the Army Research Office, Durham, and the Advanced Research

Projects Agency.
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